

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

COPYRIGHT (c) 1979

VECTOR GRAPHIC, INC.

REVISION OF NOV. 15, 1979

Copyright

Copyright (c) 1373 by Digital Research. An rights reserved,

No part ct this publication mav be reproduced, transmitted
transcribed, stored in a retrieval system, or translated into

anv language or computer language, in any form or bv anv
means, electronic, mechanical, magnetic, optical, chemical,

manual or otherwise, without the prior written permission at

Digital Research, Post Office Box 379, Pacific Grove.
California 93950.

Disclaimer

Digital Research makes no representations or warranties with

respect to the contents hereof .and •specifically disclaims any
implied 'warranties of merchantability or fitness for any parti-

cular purpose. Further, Digital Research reserves the right

to revise this publication and to make changes from time to

time in the content hereof without obligation of Digital

Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M.
MAC, and SID are trademarks of Digital Research.

Table of Contents

Section Paqe

1. INTRODUCTION 1

2. FUNCTIONAL DESCRIPTION OF CP/M 3

2.1. General Command Structure 3

2.2. Pile References 3

3. SWITCHING DISKS 6

4. THE FORM OF BUILT-IN COMMANDS 7

4.1. ERA afn cr 7

4.2. DIR afn cr - 8

4.3. REN ufnl=ufn2 cr 8

4.4. SAVE n ufn cr 9

4.5. TYPE ufn cr 9

5. LINE EDITING AND OUTPUT CONTROL 11

6. TRANSIENT COMMANDS 12
6.1. STAT cr 13

6.2. ASM ufn cr 16
6.3. LOAD ufn cr 17
6.4. PIP cr 18
6.5. ED ufn cr 25
6.6. SYSGEN cr 27
6.7. SUBMIT ufn parm#l ... parm#n cr 28

6.8. DUMP ufn cr 30

6.9. MOVCPM cr ; 30

7. BDOS ERROR MESSAGES 33

1. INTRODUCTION

.

CP/M is a monitor control program for microcomputer system development

which uses IBM—compatible flexible disks for backup storage. Using a computer

mainframe based upon Intel's 8080 microcomputer, CP/M provides a general

environment for program construction, storage, and editing, along with

assembly and program check-out facilities.

The CP/M monitor provides rapid access to programs through a

comprehensive file management package. The file subsystem supports a named

file structure, allowing dynamic allocation of file space as well as

sequential and randcm file access. Using this file system, a large number of

distinct programs can be stored in both source and machine executable form.

CP/M also supports a powerful context editor. Intel-compatible assembler,

and debugger subsystems. Optional software includes a powerful

Intel—compatible macro assembler, symbolic^ debugger, along with various

high-level languages. When coupled with CP/M s Console Command Processor, the

resulting facilities equal or excel similar large computer facilities.

CP/M is logically divided into several distinct parts?

BIOS Basic I/O System (hardware dependent)

BDOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the

diskette drives and to interface standard peripherals (teletype, CRT, Paper

Tape Reader/Punch, and user-defined peripherals) , and can be tailored by the

user for any particular hardware environment by “patching" this portion of

CP/M. The BDOS provides disk management by controlling one or more disk

drives containing independent file directories. The BDOS implements disk

allocation strategies which provide fully dynamic file construction while

minimizing head movement across the disk during access. Any particular file

may contain any number of records, not exceeding the size of any single disk.

In a standard CP/M system, each disk can contain up to 64 distinct files. The

1

BDOS has entry points which include the following primitive operations which

can be programmatically accessed:

SEARCH Look for a particular disk file by name,,

OPEN Open a file for further operations.

CLOSE Close a file after processing.

RENAME Change the name of a particular file.

READ Read a record from a particular file.

WRITE Write a record onto the disk.

SELECT Select a particular disk drive for further

operations.

The CCP provides symbolic interface between the user's console and the

remainder of the CP/M system. The CCP reads the console device and processes
commands which include listing the file directory , printing the contents of

files,, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers. The standard commands which are available
in the CCP are listed in a following section.

The last segment of CP/M is the area called the Transient Program Area
(TPA) . The TPA holds programs which are loaded from the disk under command of
the CCP. Dur inc? program editing, for example, the TPA holds the CP/M text
editor machine code and data areas. Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA.

It should be mentioned that any or all of the CP/M component subsystems
can be "overlayed" by an executing program. That is, once a user's program is

loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program's data area. A '*bootstrap“ loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded fron disk.

It should be reiterated that the CP/M operating system is partitioned
into distinct nodules, including the BIOS portion which defines the hardware
environment in which CP/M is executing. Thus, the standard system can be
easily modified to any non-standard environment by charging the peripheral
drivers to handle the custom system.

2

2. FUNCTIONAL DESCRIPTION OF CP/M.

The user interacts with CP/M primarily through the CCP, which reads and
interprets commands entered through the console. In general, the CCP
addresses one of several disks which are online (the standard system addresses
up to four different disk drives) . These disk drives are labelled A, B, C,

and D. A disk is "logged in" if the CCP is currently addressing the disk. In
order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol ">"

indicating that the CCP is ready for another command. Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version number. All CP/M systems are initially set to operate
in a 16K memory space, but can be easily reconfigured to fit any memory size
on the host system (see the MDVCPM transient command) . Following system
signon, CP/M automatically logs in disk A, prompts the user with the symbol
,,A>" (indicating that CP/M is currently addressing disk "A") , and waits for a
command. The canmands are implemented at two levels: built-in commands and
transient canmands.

2.1. GENERAL COMMAND STRUCTURE.

Built-in ccmmands are a part of the CCP program itself, while transient
canmands are loaded into the TPA from disk and executed. The built-in
ccmmands are

ERA Erase specified files.

DIR List file names in the directory.

REN Rename the specified file.

SAVE Save memory contents in a file.

TyPE Type the contents of a file on the logged disk.

Nearly all of the canmands reference a particular file or group of files. The
form of a file reference is specified below.

2.2. FILE REFERENCES.

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
“unambiguous" (ufn) or "ambiguous" (afn) . to unambiguous file reference
uniquely identifies a single file, while an ambiguous file reference may be

3

satisfied by a number of different files.

File references consist of two parts? the primary name and the secondary

name* Although the secondary name is optional, it usually is generic? that

is, the secondary name "ASM," for example, is used to denote that the file is

an assembly language source file, while the primary name distinguishes each

particular source file* The two names are separated by a as shown below:

pppppppp.sss

where pppppppp represents the pr imary name of eight characters or less, and

sss is the secondary name of no more than three characters. As mentioned

above, the nane

pppppppp

is also allowed and is equivalent to a secondary nane consisting of three

blanks. The characters used in specifying an unambiguous file reference

cannot contain any of the special characters

while all alphanumerics and remaining special characters are allowed.

An ambiguous file reference is used for directory search and pattern

matching. The form of an ambiguous file reference is similar to an

unambiguous reference, except the symbol “?“ may be interspersed throughout

the primary and secondary names. In various commands throughout CP/M, the "?"

symbol natches any character of a file name in the "?" position. Thus, the

ambiguous reference

X?Z.C?M

is satisfied by the unambiguous file names

and
XYZ.OOM

X3Z.CAM

Note that the anbiguous reference

* *
e

is equivalent to the anbiguous file reference

•s'?*?
• •••••••••••

while

4

pppppppp.*
and

*.sss

are abbreviations for

pppppppp.???
and

????????.sss

respectively. As an example,

DIR *.*

is interpreted by the CCP as a command to list the names of all disk files in
the directory, vhile

DIR X.Y

searches only for a file by the name X.Y Similarly, the command

DIR X?Y. C?M

causes a search for all (unambiguous) file names on the disk which satisfy
this ambiguous reference.

The following file names are valid unambiguous file references:

X XYZ GAMMA

X.Y XYZ.CDM GAMMA. 1

As an added convenience, the programmer can generally specify the disk
drive name along with the file name. In this case, the drive name is given as
a letter A through Z followed by a colon (:). The specified drive is then
"logged in" before the file operation occurs. Thus, the following are valid
file names with disk name prefixes:

A:X.Y B:XYZ C:GAMMA

Z :XYZ.CDM B:X.A?M C:*.ASM

It should also be noted that all alphabetic lower case letters in file
and drive names are always translated to upper case when they are processed by
the CCP.

5

3. SWITCHING DISKS

The operator can switch the currently legged disk by typing the disk

drive name "(A, B, C, or D) followed by a colon (s) when the CCP is waiting for

console input. Thus, the sequence of prompts and commands shown below might

occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

j=V>DXR.

ASM

PRN

List all files on disk A.

SAMPLE

SAMPLE

A>Bs Switch to disk B.

B>DIR * .ASM List all *!AS&!L files on B

DUMP ASM

FILES ASM

B>As Switch back to A.

4 THE FORM CF BUILT-IN (DMMANDS

The file and device reference forms described above can now be used to
fully specify the structure of the built-in commands. In the description
below, assume the following abbreviations:

ufh - unambiguous file reference

afo - ambiguous file reference

cr - carriage return

Further, recall that the CCP always translates lower case characters to upper
case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in command names and file references.

4.1 ERA afn cr

The ERA (erase) command ranoves files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the The files
which are erased are those which satisfy the ambiguous file reference afn.
The following examples illustrate the use of ERA:

ERA X.Y

ERA X.*

ERA *.ASM

ERA X?Y. C?M

ERA *.*

ERA B:*.PRN

The file named X.Y on the currently logged disk
is removed from the disk directory, and the space
is returned.

All files with primary name X are removed from
the current disk.

All files with secondary name ASM are removed
from the current disk.

All files on the current disk which satisfy the
ambiguous reference X?Y.C?M are deleted.

Erase all files on the current disk (in this case
the CCP prompts the console with the message

"ALL FILES (Y/N)
?“

which requires a Y response before files are
actually removed)

.

All files on drive B which satisfy the ambiguous
reference ????????.PRN are deleted, independently
of the currently logged disk.

7

4.2. DIR afn cr

The DIR (directory) command causes the names of all files vhich satisfy

the ambiguous file name afn to be listed at the console device. As a special

case, the command

DIR

lists the files on the currently logged disk (the command “'DIR'" is equivalent

to the command "DIR *.*"). Valid DIR commands are shown below.

DIR X.Y

DIR X?Z «C?M

DIR ??.Y

Similar to other CCP commands, the afn can be preceded by a drive name.

The following DIR commands cause the selected drive to be addressed before the

directory search takes place.

DIR Bs

DIR B;X„Y

DIR Bs*.A?M

If no files can be found on the selected diskette which satisfy the

directory request, then the message “NOT FOUND" is typed at the console.

4.3. REN ufnl=ufn2 cr

The REN (rename) command allows the user to change the names of files on

disk. The file satisfying ufn2 is changed to ufnl. The currently logged disk

is assumed to contain the file to rename (ufnl) . The CCP also allows the user

to type a left-directed arrow instead of the equal sign, if the user's console

supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.

REN XYZ .GOM=XYZ .XXX The file XYZ.XXX is changed to XYZ.COM.

The operator can precede either ufnl or ufn2 (or both) by an optional

drive address. Given that ufnl is preceded by a drive name, then ufn2 is

assumed to exist on the sane drive as ufnl. Similarly, if ufn2 is preceded by

a drive name, then ufnl is assumed to reside on that drive as well. If both

ufnl arri ufn2 are preceded by drive names, then the same drive must be

8

specified in both cases. The following REN commands illustrate this format.

REN A:X.ASM = Y.ASM The file Y.ASM, is changed to X.ASM on
drive A.

REN B:ZAP.BAS=ZOT. BAS The file ZOT.BAS is changed to ZAP.BAS
on drive B.

REN BrA.ASM = B:A.BAK The file A.BAR is renamed to A.ASM on
drive B.

If the file ufiil is already present, the REN command will respond with
the error "FILE EXISTS" and not perform the change. If ufn2 does not exist on
the specified diskette, then the message “NOT FOUND" is printed at the

console.

4.4. SAVE n ufn cr

The SAVE ccmmarri places n pages (256-byte blocks) onto disk fran the TPA
and names this file ufn. In the CP/M distribution system, the TPA starts at
100H (hexadecimal) , which is the second page of memory. Thus, if the user's
program occupies the area fran 100H through 2FFH, the SAVE command must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed. Examples are:

SAVE 3 X.OOM Copies 100H through 3FFH to X.OOM.

SAVE 40 Q Copies 100H through 28FFH to Q (note

that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal)

.

SAVE 4 X.Y Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion of the
command, as shown below.

SAVE 10 B : ZOT. CDM Copies 10 pages (100H through 0AFFH) to
the file ZOT. COM on drive B.

4.5. TYPE ufn cr

The TYPE command displays the contents of the ASCII source file ufn on

the currently logged disk at the console device. Valid TYPE commands are

TYPE X.Y

9

TYPE X.PLM

TYPE XXX

The TYPE command expands tabs (clt-I characters) , assuming tab positions

are set at every eighth column. The ufn can also reference a drive name as

showi below.

TYPE BsX.PRN The file X.PFN from drive B is displayed.

10

5. LINE EDITING PND OUTPUT CONTROL.

The CCP allows certain line editing functions while typing command lines.

Delete and echo the last character typed at the

console.

Delete the entire line typed at the console.

(Same as ctl-U)

Retype current command line: types a "clean line" fol-

lowing character deletion with rubouts.

Physical end of line: carriage is returned, but line

is not sent until the carriage return key is depressed.

CP/M system reboot (warm start)

End input from the console (used in PIP and ED).

The control functions ctl-P and ctl-S affect console output as shown below.

ctl-P Copy all subsequent console output to the currently
assigned list device (see the STAT command) . Output
is sent to both the list device and the console device
until the next ctl-P is typed.

ctl-S Stop the console output temporarily. Program execution
and output continue when the next character is typed
at the console (e.g., another ctl-S). This feature is

used to stop output on high speed consoles, such as
CRT's, in order to view a segment of output before con-
tinuing .

rubout

ctl-U

ctl-X

ctl-R

ctl-E

ctl-C

ctl-Z

Note that the ctl-key sequences shown above are obtained by depressing the
control and letter keys simultaneously. Further, CCP command lines can
generally be up to 255 characters in length; they are not acted upon until the
carriage return key is typed.

11

4

6. TRANSIENT COMMANDS.

Transient commands are loaded from the currently logged disk and executed

in the TPA. The transient commands defined for execution under the CCP are

shown below. Additional functions can easily be defined by the user (see the

LOAD command definition)

.

STAT List the number of bytes of storage remaining on the

currently logged disk, provide statistical information
about particular files, and display or alter device
assignment.

ASM Load the CP/M assembler and assemble the specified

program from disk.

LCAD Load the file in Intel "hex 1
" machine code format and

produce a file in machine executable form which can be

loaded into the TPA (this loaded program becomes a
new command under the CCP)

.

' DDT Load the CP/M debugger into TPA and start execution.

PIP Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations.

ED Load and execute the CP/M text editor program.

SYSGEN Create a new CP/M system diskette.

SUBMIT Submit a file of commands for batch processing.

DUMP Dump the contents of a file in hex.

MDVCPM Regenerate the CP/M system for a particular memory
size.

Transient commands are specified in the same manner as built-in commands, and
additional commands can be easily defined by the user. As an added
convenience, the transient command can be preceded by a drive name, which
causes the transient to be loaded from the specified drive into the TPA for

execution. Thus, the command

B:STAT

causes CP/M to temporarily "log in" drive B for the source of the STAT
transient, and then return to the original logged disk for subsequent
processing.

12

The basic transient commands are listed in detail below.

6.1. STAT cr

The STAT command provides general statistical information about file

storage and device assignment. It is initiated by typing one of the following

forms:

STAT cr
STAT "ccmmand line" cr

Special forms of the "command line" allow the current device assignment to be

examined and altered as well. The various ccmmand lines which can be

specified are shown below, with an explanation of each form shown to the

right.

STAT cr If the user types an empty ccmmand line, the STAT
transient calculates the storage remaining on all

active drives, and prints a message

x: R/W, SPACE: nnnK
or

x: R/0, SPACE: nnnK

for each active drive x, where RAJ indicates the
drive may be read or written, and R/O indicates
the drive is read only (a drive becomes R/0 by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start) . The space

__ remaining on the diskette in drive x is given
in kilobytes by nnn.

STAT x: cr If a drive name is given, then the drive is

selected before the storage is computed. Thus,

the command "STAT B:" could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK

STAT afn cr The ccmmand line can also specify a set of files
to be scanned by STAT. The files which satisfy
afii are listed in alphabetical order, with stor-
age requirements for each file under the heading

RECS BYTS EX D: FILENAME.TOP
rrrr bbbK ee d:pppppppp.sss

where rrrr is the number of 128-byte records

13

allocated to the file, bbb is the number of kilo-
bytes allocated to the file (bbb=rrrr*128/1024)

,

ee is the number of 16K extensions (ee=bbb/16)

,

d is the drive name containing the file (A...Z)

,

pppppppp is the (up to) eight-character primary
file name, and sss is the (up to) three-character

secondary name. After listing the individual
files, the storage usage is summarized.

STAT x:afn cr As a convenience, the drive name can be given
ahead of the afn. In this case, the specified

drive is first selected, and the form “STAT afn“

is executed.

STAT x : =R/0 cr This form sets the drive given by x to read-only,

which remains in effect until the next warm or

cold start takes place. When a disk is read-only,

the message

BDQS ERR ON x: READ ONLY

will appear if there is an attempt to write to

the read-only disk x. CP/M waits until a key
is depressed before performing an automatic warm
start (at which time the disk becomes R/W)

.

The STAT command also allows control over the physical to logical device

assignment (see the IOBYTE function described in the manual “CP/M Interface

Guide".) In general, there are four

logical peripheral devices which are, at any particular instant, each assigned

to one of several physical peripheral devices. The four logical devices are

named;

CON; The system console device (used by CCP
for communication with the operator)

RDR; The paper tape reader device

PUN; The paper tape punch device

LST: The output list device

The actual devices attached to any particular computer system are driven
by subroutines in the BIOS portion of CP/M. Thus, the logical RDR; device,
for example, could actually be a high speed reader. Teletype reader, or
cassette tape. In order to allow some flexibility in device naming and
assignment, several physical devices are defined, as shown below;

14

TTY:

CRT:

BAT:

UC1:

PTR:

UR1:

UR2:

FTP:

UP1:

UP2:

LPT:

UU:

Teletype device (slow speed console)

Cathode ray tube device (high speed console)

Batch processing (console is current RDR:

,

output goes to current LST: device)

User-defined console

Paper tape reader (high speed reader)

User-defined reader #1

User-defined reader #2

Paper tape punch (high speed punch)

User-defined punch #1

User-defined punch #2

Line printer

User-defined list device #1

It must be emphasized that the physical device names may or may not

actually correspond to devices which the names imply. That is, the PTP:

device may be implemented as a cassette write operation, if the user wishes.
The exact correspondence and driving subroutine is defined in the BIOS portion
of CP/M.

The possible logical to physical device assignments can be displayed by
typing

STAT VAL: cr

The STAT prints the possible values which can be taken on for each logical
device:

CON: = TTY: CRT: BAT: UC1:
RDR: = TTY: PTR: UR1: UR2:
PUN: = TTY: PTP: UP1: UP2:
LST: = TTY: CRT: LPT: UU:

In each case, the logical device shown to the left can take any of the four

physical assignments shown to the right on each line. The current logical to
physical mapping is displayed by typing the command

STAT DEV: cr

15

which produces a listing of each logical device to the left, and the current

corresponding physical device to the right. For example, the list might

appear as follows:

00N: - CRT:
HDRs = UR1:
PON: = FTP:

LET: » TT¥s

The current logical to physical device assignment can be changed by typing a

STAT command of the form

STAT ldl = pdl, ld2 pd2 , , ldn - pdn cr

where ldl through ldn are logical device nanes, and pdl through pdn are

compatible physical device names (i.e. , Idi and cdi appear on the same line in

the "VAL:" command shown above). The following are valid STAT commands which

change the current logical to physical device assignments:

STAT CDNs^CKE: cr
STAT FtJN: = THz ,LST:=LPT: , EDR:=TTy: cr

6.2. AS4 urn cr

The ASM command loads and executes the CP/M 8030 assembler. The ufn

specifies a source file containing asssnbly language statements where the

secondary nane is assumed to be ASM, and thus is not specified. The following

ASM commands are valid:

ASM X

ASM GAMMA

The two-pass assembler is automatically executed. If asssnbly errors occur

during the second pass, the errors are printed at the console.

The assembler produces a file

X.FRN

where x is the primary name specified in the ASM command. The PEN file

contains a listing of the source program (with Imbedded tab characters if

present in the source program) , along with the machine code generated for each

statement and diagnostic error messaaes, if any. The PEN file can be listed

16

at the console using the TYPE command, or sent to a peripheral device using

PIP (see the PIP command structure below). Note also that the PRN file

contains the original source program, augmented by miscellaneous assembly
information in the leftmost 16 columns (program addresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the

original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator's guide) by removing the

leftmost 16 characters of each line (this can be done by issuing a single
editor "macro" command) . The resulting file is identical to the original
source file and can be renamed (REN) from PRN to ASM for subsequent editing
and assembly. The file

x.HEX

is also produced which contains 8080 machine language in Intel "hex" format
suitable for subsequent loading and execution (see the LOAD command) . For

complete details of CP/M's assembly language program, see the "ZSM for CP/M
Z-80 Assembler User's Guide."

Similar to other transient commands, the source file for assembly can be
taken from an alternate disk by prefixing the assembly language file name by a
disk drive name. Thus, the command

ASM B:ALPHA cr

loads the assembler from the currently logged drive and operates upon the

source program ALPHA.ASM on drive B. The HEX and PRN files are also placed on
drive B in this case.

6.3. LOAD ufn cr

The LOAD command reads the file ufn, which is assumed to contain "hex"

format machine code, and produces a memory image file which can be
subsequently executed. The file name ufn is assumed to be of the form

x.HEX

and thus only the name x need be specified in the command. The LOAD command
creates a file named

x.COM

which marks it as containing machine executable code. The file is actually
loaded into memory and executed when the user types the file name x
immediately after the prompting character “>" printed by the CCP,

In general, the CCP reads the name x following the prompting character
and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

17

x.GOM

If found, the machine code is loaded into the TPA, and the program executes.

Thus, the user need only LOAD a hex file once? it can be subsequently

executed any number of times by simply typing the primary name. In this way,

the user can "invent" new ccmmands in the CCP. (Initialized disks contain the

transient ccmmands as COM files, which can be deleted at the user s option.)

The operation can take place on an alternate drive if the file name is

prefixed by a drive name. Thus,

LOAD BrBETA

brings the LOAD program into the TPA from the currently logged disk and

operates upon drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format

hexadecimal machine code records (as produced by the ASM program, for example)

which begin at 100H, the beginning of the TPA. Further, the addresses in the

hex records must be in ascending order; qaps in unfilled memory regions are

filled with zeroes by the LOAD command as the hex records are read. Thus,

LOAD must be used only for creating CP/M standard "COM" files which operate in

the TPA. Programs which occupy regions of memory other than the TPA can be

loaded under DDT. . . •

,
.y /

6.4. PIP cr
('; fr. A

PIP is the CP/M Peripheral Interchange Program which implements the basic

media conversion operations necessary to load, print, punch, copy, and combine

disk files. The PIP program is initiated by typing one of the following forms

(1) PIP cr

(2) PIP "command line" cr

In both cases, PIP is loaded into the TPA and executed. In case (1) , PIP

reads command lines directly from the console, prompted with the

character, until an empty command line is typed (i.e. , a single carriage

return is issued by the operator) . Each successive command line causes some

media conversion to take place according to the rules shown below. Form (2)

of the PIP command is equivalent to the first, except that the single command

line given with the PIP command is automatically executed, and PIP terminates

immediately with no further prompting of the console for input command lines.

The form of each command line is

destination = source#l, source#2, ... , source#n cr

where "destination" is the file or peripheral device to receive the data, and

18

I

“source#l, . .., sourcefn" represents a series of one or more files or devices

which are copied from left to right to the destination.

When multiple files are given in the command line (i.e, n > 1) , the

individual files are assumed to contain ASCII characters, with an assumed CP/M

end-of-file character (ctl-Z) at the end of each file (see the 0 parameter to

override this assumption) . The equal symbol (=) can tie replaced by a

left-oriented arrow, if your console supports this ASCII character, to improve

readability. Lower case ASCII alphabetics are internally translated to upper

case to be consistent with CP/M file and device name conventions. Finally,

the total command line length cannot exceed 255 characters (ctl-E can be used

to force a physical carriage return for lines which exceed the console width)

.

The destination and source elements can be unambiguous references to CP/M

source files, with or without a preceding disk drive name. That is, any file

can be referenced with a preceding drive name (A:, B:, C:, or D:) which

defines the particular drive where the file may be obtained or stored. When

the drive name is not included, the currently logged disk is assumed.

Further, the destination file can also appear as one or more of the source

files, in which case the source file is not altered until the entire

concatenation is complete. If the destination file already exists, it is

removed if the command line is properly formed (it is not removed if an error

condition arises) . The following command lines (with explanations to the

right) are valid as incut to PIP:

X = Y cr

X = Y,Z cr

X.ASM=Y.ASM,Z.ASM,FIN.ASM cr

NEW.ZOT = B SOLD. ZAP cr

Copy to file X from file Y,

where X and Y are unambiguous
file names; Y remains unchanged.

Concatenate files Y and Z and

copy to file X, with Y and Z

unchanged.

Create the file X.ASM from the

concatenation of the Y, Z, and

FIN files with type ASM.

Move a copy of OLD. ZAP from drive
B to the currently logged disk;

name the file NEW.ZOT.

BsA.U = BsE.V,A:C.W,D.X cr Concatenate file B.V from drive B

with C.W from drive A and D.X.

from the logged disk; create
the file A.U on drive B.

For to re convenient use, PIP allows abbreviated commands for transferring

files between disk drives. The abbreviated forms are

19

PIP x:=afn cr

PIP x:=y:afn cr

PIP ufn = y: cr

PIP x:ufn = y: cr

The first form copies all files from the currently looped disk which satisfy

the a£n to the same file names on drive x (x = A...Z) . The second form is

eauivalent to the first, where the source for the copy is drive y (y = A**.

Z) . The third form is equivalent to the command "PIP ufn=ysufn cr“ which

copies the file given by ufn from drive y to the file ufn on drive x. The

fourth form is equivalent to the third, where the source disk is explicitly
given by y.

Note that the source and destination disks must be different in all of

these cases. If an afn is specified, PIP lists each ufn which satisfies the

afn as it is being copied. If a file exists by the sane name as the

destination file, it is removed ucon successful completion of the copy, and

replaced by the copied file.

The following PIP commands give examples of valid disk-to-disk copy

operations :

Copy all files which have the
secondary name "’COM*

11 to drive B
from the current drive.

Copy all files which have the

primary name "ZAP" to drive A
fron drive B.

Eauivalent to ZAP,ASM=B : ZAP.ASM

Equivalent to 8:Z0T.C0M=A:Z0T.O3M

Same as B:GAMMA.BAS=GAMMA.BAS

Same as B:GAMMA, BAS=A:GAMMA.BAS

PIP also allows reference to Dhysical and logical devices which are

attached to the CP/M system. The device names are the same as given under the

STAT command, along with a number of specially named devices. The logical

devices qiven in the STAT command are

CON: (console) , EDR: (reader) , PUN: (punch) , and LST: (list)

while the physical devices are

Bs=*.CDM cr

A:=B:ZAP.* cr

ZAP.ASM=B: cr

B:ZGT.Q3M=A: cr

B:=GAMMA.BAS cr

B:=A:GAMMA.BAS cr

23

TTY: (console, reader, punch, or list)

CRT: (console, or list) , UC1: (console)

PTR: (reader) , UR1: (reader) , UR2: (reader)

FTP: (punch) , UP1: (punch) , UP2: (punch)

LPT: (list) , UL1: (list)

(Note that the "BAT:" physical device is not included, since this assignment

is used only to indicate that the RDR: and LST: devices are to be used for

console input/output.)

The FDR, 1ST, PUN, and CON devices are all defined within the BIOS

portion of CP/M, and thus are easily altered for any particular I/O system.

(The current physical device mapping is defined by IOBYTE; see the "CP/M

Interface Guide" for a discussion of this function) . The destination device

must be capable of receiving data (i.e., data cannot be sent to the punch),

and the source devices must be capable of qeneratinq data (i.e., the LST:

device cannot be read)

.

The additional device names which can be used in PIP commands are

NUL: Send 40 "nulls" (ASCII 0's) to the device
(this can be issued at the end of punched output)

.

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the

destination device (sent automatically at the

end of all ASCII data transfers through PIP)

.

INP: Special PIP input source which can be "patched"

into the PIP program itself: PIP qets the input

data character-by-character by CALLina location

103H, with data returned in location 109H (parity

bit must be zero)

.

OUT: Special PIP output destination which can be
patched into the PIP program: PIP CALLS location

106H with data in register C for each character

to transmit. Note that locations 109H throuqh

1FFH of the PIP memory image are not used and

can be replaced by special purpose drivers using

DDT (see the DDT operator's manual).

PRN: Same as LST: , except that tabs are expanded at

every eighth character position, lines are

numbered , and page ejects are inserted every 60

lines, with an initial eject (same as [tSnp])

.

File and device names can be interspersed in the PIP commands. In each

case, the specific device is read until end-of-file (ctl-Z for ASCII files,

and a real end of file for non-ASCII disk files) . Data from each device or

file is concatenated from left to right until the last data source has been

21

read. The destination device or file is written using the data from the

source files,, and an end-of-file character (ctl-Z) is appended to the result

for ASCII files. Note if the destination is a disk file, then a temporary

file is created ($$$ secondary name) which is chanqed to the actual file name
only upon successful completion of the copy. Files with the extension "COM”

are always assumed to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on

the keyboard* (a rubout suffices) . PIP will respond with the message "ABORTED"
to indicate that the operation was not completed. Note that if any operation

is aborted, or if an error occurs during processing, PIP removes any pending

commands which were set up while using the SUBMIT command.

It should also be noted that PIP performs a special function if the

destination is a disk file with type "HEX” (an Intel hex formatted machine
code file) , and the source is an external peripheral device, such as a paper
tape reader. In this case, the PIP program checks to ensure that the source

file contains a properly formed hex file, with legal hexadecimal values and

checksum records. When an invalid input record is found, PIP reports an error

message at the console and waits for corrective action. It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape

back about 20 inches). When the tape is ready for the re-read, type a single

carriage return at the console, and PIP will attempt another read. If the

tape position cannot be properly read, simply continue the read (by tyoing a

return following the error message) , and enter the record manually with the ED
program after the disk file is constructed. For convenience, PIP allows the

end-of-file to be entered from the console if the source file is a FDR:

device. In this case, the PIP program reads the device and monitors the

keyboard. If ctl-Z is typed at the keyboard, then the read operation is

terminated normally.

Valid PIP corunands are shown below.

PIP 1ST: = X.PRN cr

PIP cr

*CDN: =X.ASM ,Y.ASM ,Z .ASM cr

*X.HEX=CON: ,Y.HEX,PTR: cr

*cr

Cbpy X.PRN to the 1ST device and

terminate the PIP program.

Start PIP for a sequence of

canmands (PIP prompts with "*")

.

Concatenate three ASM files and
copy to the CON device.

Create a HEX file by reading the

CDN (until a ctl-Z is typed) , fol-
lowed by data from Y.HEX, followed
by data from PTR until a ctl-Z is

encountered.

Single carriage return stops PIP.

22

PIP PUN:=NUL: ,X.ASM,EOF: ,NUL: cr Send 40 nulls to the punch device;
then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 40 more null charac-
ters.

The user can also specify one or more PIP parameters, enclosed in left

and right square brackets, separated by zero or more blanks. Each parameter

affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can

be followed by an optional decimal integer value (the S and 0 parameters are

exceptions) . The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII

x-off character (ctl-S) is received from the source device.
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader. Upon receipt of

the x-off, PIP clears the disk buffers and returns for more
inout data. The amount of data which can be buffered is de-
pendent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow)

.

Dn Delete characters which extend past column n in the transfer
of data to the destination from the character source. This
parameter is used most often to truncate long lines which are
sent to a (narrow) printer or console device.

E Echo all transfer operations to the console as they are being
performed.

F Filter form feeds from the file. All imbedded form feeds are
removed. The P parameter can be used simultaneously to

insert new form feeds.

H Hex data transfer: all data is checked for proper Intel hex
file format. Non-essential characters between hex records
are removed during the copy operation. The console will be
prompted for corrective action in case errors occur.

I Ignore ":00" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter)

.

L Translate upper case alphabetics to lower case.

N Add line numbers to each line transferred to the destination
starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2
is specified, then leading zeroes are included, and a tab is

inserted following the number. The tab is expanded if T is

23

set.

0 Object file (non-ASCII) transfer; the normal CP/M end of

file is ignored.

Pn Include page ejects at every n lines (with an initial page

eject). If n = 1 or is excluded altogether, page ejects

occur every 60 lines. If the F parameter is used, form feed

suppression takes place before the new page ejects are

inserted.

Qs*z Quit copying from the source device or file when the

string s (terminated by ctl-Z) is encountered.

Ssf z Start copying frcm the source device when the string s is

encountered (terminated by ctl-Z) . The S and Q parameters

can be used to •abstract" a particular section of a file

(such as a subroutine) . The start and guit strings are al-

ways included in the copy operation.

NOTE - the strings following the s and g parameters are

translated to upper case by the CCP if form (2) of the

PIP command is used. Form (1) of the PIP invocation, how-

ever, does not perform the automatic upper case translation.

(1) PIP cr

(2) PIP "command line" cr

Tn Expand tabs (ctl-I characters) to every nth column during the

transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the

the copy operation.

V Verify that data has been copied correctly by rereading

after the write operation (the destination must be a disk

file)

.

Z Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file

transfer:

PIP X.ASM=B: [v] cr Copy X.ASM from drive B to the current drive
and verify that the data was properly copied.

PIP LPT :=X.ASM [nt8u] cr Copy X.ASM to the LPT: device; number each

line, expand tabs to every eighth column, and

translate lower case alphabetics to upper
case.

24

PIP PUN:=X.HEX[il ,Y.ZOT[h] cr First copy X.HEX to the PUN: device and

ignore the trailing “ :00“ record in X.HEX;

then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any ":00" records which it contains.

PIP X.LIB = Y.ASM [sSUBRl: fz qJMP L3T z]
cr Copy from the file Y.ASM

into the file X.LIB. Start the copy when the

string "SUBR1:" has been found, and quit copy-
ing after the string “JMP L3" is encountered.

PIP PRN:=X.ASM [p50] Send X.ASM to the LST: device, with line num-
bers, tabs expanded to every eighth column,
and page ejects at every 50th line. Note that
nt8p60 is the assumed parameter list for a PEN
file; p50 overrides the default value.

6.5. ED ufn cr

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment. Complete details of

operation are given the ED user's manual, "ED: a Context Editor for the CP/M
Disk System." In general, ED allows the operator to create and operate upon
source files vfoich are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence) . There is no
practical restriction on line length (no single line can exceed the size of

the working memory) , which is instead defined by the number of characters
typed between cr's. The ED program has a number of commands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files under CP/M. Although the CP/M has a

limited memory work space area (approximately 5000 characters in a 16K CP/M
system) , the file size which can be edited is not limited, since data is

easily "paged" through this work area.

Upon initiation, ED creates the specified source file, if it does not
exist, and opens the file for access. The programmer then "appends" data from
the source file into- the work area, if the source file already exists (see the
A command) , for editinq. The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command)

.

Particular points in the program can be automatically paged and located by
context (see the N command) , allowing easy access to particular portions of a
large file.

Given that the operator has typed

ED X.ASM cr

25

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run. Upon completion of ED, the X.ASM

file (original file) is renamed to X.BAK, and the edited work file is renamed

to X.ASM. Thus, the X.BAK file contains the original (unedited) file, and the

X.ASM file contains the newly edited file. The operator can always return to

the previous version of a file by removing the most recent version, and

renaming the previous version. Suppose, for example, that the current X.ASM
file was improperly edited; the sequence of CCP command shown below would

reclaim the backup file.

DIR X.* Check to see that BAK file
is available.

ERA, X.ASM Erase most recent version.

REN X.ASM=X.BAK Rename the BAK file to ASM.

\

<

i

i

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q command) without destroying the original file. In this case, the

BAK file is not created, and the original file is always intact.

The ED program also allows the user to “ping-ponq" the source and create
backup files between two disks. The form of the ED command in this case is

ED ufn ds

where ufh is the nane of a file to edit on the currently logged disk, and d is

the name of an alternate drive. The ED program reads and processes the source
file, and writes the new file to drive d, using the name ufe. Upon completion
of processing, the original file becomes the backup file. Thus, if the
operator is addressing disk A, the following command is valid:

ED X.ASM B:

which edits the file X.ASM on drive A, creatina the new file X.$$$ on drive
B. Upon completion of a successful edit, A:X.ASM is renamed to A: X.BAK, and
B:X.$$$ is renamed to BsX.ASM. For user convenience, the currently logged
disk becomes drive B at the end of the edit. Note that if a file by the name
B : X.ASM exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution against accidently destroying a
source file. In this case, the operator must first ERAse the existing file
and then restart the edit operation.

26

Similar to other transient commands, editing can take place on a drive

different from the currently logged disk by preceding the source file name by

a drive nane. Examples of valid edit requests are shown below

ED A:X.ASM Edit the file X.ASM on drive A, with
new file and backup on drive A.

ED B:X.ASM A: Edit the file X.ASM on drive B to the

temporary file X.S on drive A. On
termination of editing, change X.ASM
on drive B to X.BAK, and change X.$$S

on drive A to X.ASM.

6.6. SYSGEN cr

The SYSGEN transient command allows generation of an initialized diskette

containing the CP/M operating system. The SYSGEN program prompts the console

for commands, with interaction as shown below.

SYSGEN cr Initiate the SYSGEN program.

SYSGEN VERSION m.m SYSGEN sign-on messaqe.

SOURCE DRIVE NAME (OR RETURN TO SKIP)
Respond with the drive name (one

of the letters A, B, C, or D) of
the disk containing a CP/M sys-
tem; usually A. If a copy of

CP/M already exists in memory,
due to a MOVCPM command, type a

cr only. Typing, a drive name
x will cause the response:

SOURCE ON x THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive
x (x is one of A, B, C, or D)

.

Answer with cr when ready.

FUNCTION COMPLETE System is copied to memory.
SYSGEN will then prompt with:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
If a diskette is being ini-
tialized, place the new disk
into a drive and answer with
the drive name. Otherwise, type
a cr and the system will reboot
from drive A. Typing drive name
x will cause SYSGEN to prompt

27

with;

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
x; type return when ready.

FUNCTION COMPLETE New diskette is initialized
in drive x.

The "DESTINATION" prompt will be repeated until a single carriage return is

typed at the console, so that more than one disk can be initialized.

Upon completion of a successful system generation, the new diskette
contains the operating system, and only the built-in commands are available.
A factory-fresh IBM-ccmpatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate COM files

from an existing CP/M diskette to the newly constructed diskette using the PIP
transient.

The user can copy all files from an existing diskette by typing the PIP
command

PIP B: = A; *.*[v] cr

which copies all files from disk drive A to disk drive B, and verifies that
each file has been copied correctly. The name of each file is displayed at
the console as the copy operation proceeds.

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system. Further, if a diskette is being used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to

be used with CP/M.

6.7. SUBMIT ufn parmfl ... carman cr

The SUBMIT command allows CP/M commands to be batched together for
automatic processing. The ufn given in the SUBMIT command must be the
filename of a file which exists on the currently logged disk, with an assumed
file type of “SUB." The SUB file contains CP/M prototype commands, with
possible parameter substitution. The actual parameters parm#l ... parmln are
substituted into the prototype commands, and, if no errors occur, the file of
substituted commands are processed sequentially by CP/M.

28

The prototype command file is created using the ED program, with

interspersed "$" parameters of the form

$1 $2 $3 ... $n

corresponding to the number of actual parameters which will be included when

the file is submitted for execution. When the SUBMIT transient is executed,

the actual parameters parmtl ... parm#n are paired with the formal parameters

$1 ... $n in the prototype commands. If the number of formal and actual

parameters does not correspond, then the submit function is aborted with an

error message at the console. The SUBMIT function creates a file of

substituted commands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of the

SUBMIT) , this command file is read by the CCP as a source of input, rather

than the console. If the SUBMIT function is performed on any disk other than

drive A, the commands are not processed until the disk is inserted into drive

A and the system reboots. Further, the user can abort command processing at

any time by typina a rubout when the command is read and echoed. In this

case, the 5.SUB file is removed, and the subsequent commands come from the

console. Command processing is also aborted if the CCP detects an error in

any of the commands. Proqrams which execute under CP/M can abort processing of

command files when error conditions occur by simply erasing any existing

$$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, the user may type

a which reduces to a single "$*' within the command file. Further, an

up-arrow symbol may precede an alphabetic character x, which produces a

single ctl-x character within the file.

The last caranand in a SUB file can initiate another SUB file, thus
allowing chained batch commands.

Suppose the file ASMBL.-SUB exists on disk and contains the prototype
commands

ASM $1
DIR $1.*
ERA *.BAK
PIP $2:=$1.PRN
ERA Sl.PPN

and the command
SUBMIT ASMBL X PRN or

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file,

substituting "X" for all occurrences of $1 and "PRN'* for all occurrences of

$2, resulting in a $$$.SUB file containing the commands

29

A®! X
om x.*
ERA *.BAK
PIP PRN;=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file which is on an alternate drive

by preceding the file name by a drive name. Submitted files are only acted

upon, however, when they appear on drive A. Thus, it is possible to create a

submitted file on drive B which is executed at a later time when it is

inserted in drive A.

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console

in hexadecimal form. The file contents are listed sixteen bytes at a time,

with the absolute byte address listed to the left of each line in

hexadecimal. Long typeouts can be aborted by pushing the rubout key during

printout. (The source listing of the DUMP program is given in the "CP/M

Interface Guide" as an example of a program written for the CP/M environment.)

6.9. MQVCPM cr

The MQVCPM program allows the user to reconfigure the CP/M system for any

particular memory size. Two optional parameters may be used to indicate (1)

the desired size of the new system and (2) the disposition of the new system

at program termination. If the first parameter is emitted or a is given,

the MQVCPM program will reconfigure the system to its maximum size, based upon

the kilobytes of contiguous RAM in the host system (starting aat 0000H) . If

the second parameter is emitted, the system is executed, but not permanently

recorded; if is given, the system is left in memory, ready for a SYSGEN

operation. The MQVCPM program relocates a memory image of CP/M and places

this image in memory in preparation for a system generation operation. The

command forms are;

MQVCPM cr Relocate and execute CP/M for manage-
ment of the current memory configura-
tion (memory is examined for contigu-
ous RAM, starting at 100H) . Upon com-
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette.

30

MOVCPM n cr Create a relocated CP/M system for

management of an n kilobyte system (n

must be in the range 16 to 64)

,

and

execute the system, as described above.

MOVCPM * * cr Construct a relocated memory image for

the current memory configuration, but
leave the memory image in memory, in

preparation for a SYSGEN operation.

MOVCPM n * cr Construct a relocated memory image for

an n kilobyte memory system, and leave

the memory image in preparation for a

SYSGEN operation.

The command

MOVCPM * *

for example, constructs a new version of the CP/M system and leaves it in

memory, ready for a SYSGEN operation. The message

READY FOR "SYSGEN” OR
"SAVE 32 CPMxx.COM”

is printed at the console upon completion, where xx is the current memory size

in kilobytes. The operator can then type

SYSGEN cr Start the system generation.

SOURCE ERIVE NAME (OR RETURN TO SKIP) Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation.

DESTINATION ERIVE NAME (OR RETURN T0 REBOOT)
Respond with B to write new system
to the diskette in drive B. SYSGEN
will prompt with:

DESTINATION ON B, THEN TYPE RETURN
Ready the fresh diskette on drive
B and type a return when ready.

Note that if you respond with "A" rather than "B" above, the system will be

written to drive A rather than B. SYSGEN will continue to type the prompt:

DESTINATION ERIVE NAME (OR RETURN TO REBOOT)

until the operator responds with a single carriage return, which stops the

31

SYSGEN program with a system reboot.

The user can then go through the reboot process with the old or new

diskette. Instead of performing the SYSGEN operation, the user could have

typed

.

SAVE 32 CPMxx.CDM

at the completion of the MOVCPM function, which would place the CP/M memory

image on the currently logged disk in a form which can be “patched." This is

necessary when operating in a non-standard environment vfaere the BIOS must be

altered for a particular peripheral device configuration.

Valid MOVCPM commands are given below:

MOVCPM 48 cr Construct a 48K verskon of CP/M and start

execution.

MOVCPM 48 * cr

MOVCPM * * cr

Construct a 48K version of CP/M in prepara-

tion for permanent recording: response is

READY FOR "SYSGEN" OR
"SAVE 32CPM48.COM"

Construct a maximum memory version of CP/M'

and start execution.

It is important to note that the newly created system is serialized with

the number, attached to the original diskette and is subject to the conditions

of the Digital Research Software Licensing Agreement.

32

7. BDOS ERROR MESSAGES.

There are three error situations which the Basic Disk Operating System

intercepts during file processsing. When one of these conditions is detected,

the BDOS prints the message:

BDOS ERR CN x: error

where x is the drive name, and "error" is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The "BAD SECTOR" message indicates that the disk controller electronics

has detected an error condition in reading or writing the diskette. This

condition is generally due to a malfunctioning disk controller, or an

extremely worn diskette.. If you find that your system reports this error more

than once a month, you should check the state of your controller electronics,

and the condition of your media.

In any case; recovery from this condition is accomplished by
typing a ctl-C to reboot (this is the safest!) , or a return, which simply
ignores the bad sector in the file operation. Note, however, that typing a
return may destroy your diskette integrity if the operation is a directory
write, so make sure you have adequate backups in this case.

The “SELECT" error occurs when there is an attempt to address a drive
beyond the A through D range. In this case, the value of x in the error

message gives the selected drive. The system reboots following any input from

the console.

The “READ ONLY" message occurs when there is an attempt to write to a

diskette which has been designated as read-only in a STAT command, or has been

set to read-only by the BDOS. In general, the operator should reboot C?/M
either by using the* warm start procedure (ctl-C) or by performing a cold start

whenever the diskettes are changed. If a changed diskette is to be read but
not written, BDOS allows the diskette to be chanced without the warm or cold
start, but internally marks the drive as read-only. The status of the drive
is subsequently changed to read/write if a warm or cold start occurs. Upon
issuing t±is message, G?/M waits for input from the console. An automatic
warm start takes place following any input.

33

